

MINUT 2019 (1), s. 1–9 ISSN 2719-3063

Ewa ŁOBOS

Faculty of Applied Mathematics, Silesian University of Technology, Gliwice, Poland

Discontinuities of real-valued functions of one real variable

Abstract. The paper shows how to identify discontinuities of real-valued functions of one real variable and how to determine types of discontinuities. There are a few practical tasks with step-by-step solutions.

keywords: real-valued function of one real variable, types of discontinuities, continuity.

1. Definitions

The continuity of functions is a crucial concept in calculus but some types of discontinuities appear in many theorems so it is important to quickly identify the discontinuities. The theory in this paper is based on [2]. More practical tasks may be found in [1].

We consider a real-valued function of one real variable, i.e. $f: D_f \to \mathbb{R}, D_f \subset \mathbb{R}$.

Definition 1. Function f has the discontinuity at x_0 if and only if exactly one of the following conditions holds:

- x_0 is the cluster point of D_f and $x_0 \notin D_f$,
- f is discontinuous at x_0 .

Point x_0 is then called the point of discontinuity of function f.

In the first case we can try to calculate the limit of f at x_0 (this limit exists or does not exist) but f is not defined at x_0 . In the second case $x_0 \in D_f$ but the limit of f at x_0 does not exist or is different than $f(x_0)$. In three special cases, the discontinuities have their own names, i.e. removable discontinuity, finite jump, and infinite jump. Let us see their definitions.

Definition 2. Function f has a removable discontinuity at x_0 if and only if $\lim_{x\to x_0} f(x)$ exists as a finite value but it is different than $f(x_0)$ or function f is undefined at x_0 .

If a function has removable discontinuity at x_0 , then we can easily define almost everywhere identical function which is continuous at x_0 . A function with removable discontinuities is presented in Fig. 1.

 $\text{Aut} \, \text{or} \, \, \text{korespondency} \text{in} \, \text{in} \, \, \text{E} \, \text{.} \, \text{Lobos} \, \big(\text{Ewa.Lobos@polsl.pl} \big).$

Data wpłynięcia: 10.07.2019 r.; aktualizacja: 9.09.2024

Fig. 1. The graph of function with removable discontinuities at a, b, c , and d

Definition 3. Function f has a finite jump at x_0 if and only if both one-sided limits of f at x_0 are proper and different.

Fig. 2 shows a function with three finite jumps.

Fig. 3. The graph of function with infinite jumps at $a, b, c,$ and d

Definition 4. Function f has an infinite jump at x_0 if and only if at least one of one-sided limits of f at x_0 is improper.

If function f has infinite jump at x_0 , then line $x = x_0$ is the vertical asymptote of curve $y = f(x)$. Infinite jumps are presented in Fig. 3.

Removable discontinuities and finite jumps are called *discontinuities of the I type*, other $-$ *disconti*nuities of the II type. Note that the class of discontinuities of the II type is very wide, it contains not only infinite jumps. For example, function $f(x) = \sin \frac{1}{x}$ has the II type discontinuity at 0 because both one-sided limits at 0 do not exist $-$ in each deleted neighbourhood of 0 this function takes on infinitely many times all values form $[-1, 1]$. Another popular example is the Dirichlet function:

$$
D(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}
$$

If x_0 is any real number, then both $\lim_{n \to \infty} D(x)$ and $\lim_{n \to \infty} D(x)$ do not exist, so the Dirichlet function has $x \rightarrow x_{0}^{-}$ $x \rightarrow x_0^+$ the II type discontinuity at each point.

2. Examples

Example 1. Determine types of discontinuities of function

$$
f(x) = \frac{\sin(x-3)}{x^2 - 4x + 3}.
$$

We have $f(x) = \frac{\sin(x-3)}{(x-3)(x-1)}$ so $D_f = \mathbb{R} \setminus \{1,3\}$. Function f is continuous on its domain (in the top we have the composition of two continuous functions, in the bottom $-$ the polynomial).

Points 1 and 3 do not belong to domain but they are cluster points of domain so f has discontinuities at 1 and at 3. In order to determine their types, we have to calculate limits of f at these points. We have

$$
\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{\sin(x-3)}{(x-3)(x-1)} \stackrel{\left[\frac{0}{0}\right]}{=} \lim_{x \to 3} \frac{\sin(x-3)}{x-3} \cdot \frac{1}{x-1} = 1 \cdot \frac{1}{2} = \frac{1}{2}
$$

because if $x \to 3$ then $x-1 \to 2$ and $x-3 \to 0$ (we apply formula $\lim_{t \to 0} \frac{\sin t}{t} = 1$). Hence f has removable discontinuity (I type) at 3.

For the limit at 1 we have to calculate one-sided limits because there is not an indeterminate form (top tends to some number different than zero, bottom tends to zero). We obtain

$$
\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{\sin(x-3)}{(x-3)(x-1)} = \left[\frac{\sin(-2)}{-2 \cdot 0^{+}} \right] = +\infty
$$

because $\sin(-1) = -\sin 1 < 0$ (look at the graph of sine function) and if $x \to 1^+$ (which means that x is close to 1 and greater than 1) then $x - 1$ tends to 0 (but it is positive).

Analogously $(x \to 1^-$ means that x is close to 1 and less than 1):

$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{\sin(x - 3)}{(x - 3)(x - 1)} = \left[\frac{\sin(-2)}{-2 \cdot 0^{-}} \right] = -\infty.
$$

Therefore f has infinite jump (the discontinuity of II type) at 1.

Remember!

A continuous function may posses discontinuities.

The graph of this function is presented in Fig. 4.

Fig. 4. The graph of function from Example 1

$$
f(x) = \operatorname{arccot} \frac{x-1}{3-x}.
$$

We see that $D_f = \mathbb{R} \setminus \{3\}$. Function f is continuous (as the composition of two continuous functions: arccot and the rational function). Hence f has the discontinuity at 3.

If $x \to 3^+$ (x is close to 3 but greater than 3), then:

- $x-1\to 2$
- $3-x \to 0^-$
- $\frac{x-1}{3-x} \to -\infty$ because we have $\left[\frac{2}{0^{-}}\right]$
- arccot $\frac{x-1}{3-x} \to \pi$

so $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \arccot \frac{x-1}{3-x}$ $\frac{x}{3-x} = \pi.$

If $x \to 3^-$ (x is close to 3 but less than 3), then:

- $x-1 \rightarrow 2$
- $3-x\rightarrow 0^+$
- $\frac{x-1}{3-x} \to +\infty$ because we have $\left[\frac{2}{0^+}\right]$
- $\arccot \frac{x-1}{3-x} \to 0$

so $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \operatorname{arccot} \frac{x-1}{3-x}$ $\frac{x}{3-x} = 0.$

Therefore f has I type discontinuity (finite jump) at 3. The graph of this function is presented in Fig. 5.

Fig. 5. The graph of function from Example 2

Example 3. Determine types of discontinuities of function

Fig. 6. The graph of function from Example 3

We see that $D_f = \mathbb{R}$. Function f is continuous on intervals: $(-\infty, 0)$, $(0, 1)$, $(1, +\infty)$. It may be discontinuous at 0 or 1, we have to check it.

Since

$$
f(0) = \arcsin 0 = 0,
$$

$$
\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left[\sqrt{e} - (1 - x)^{\frac{1}{x^2 - 2x}} \right] = \lim_{x \to 0^{-}} \left[\sqrt{e} - \left[(1 + (-x))^{-\frac{1}{x}} \right]^{\frac{-1}{x - 2}} \right] = \sqrt{e} - e^{\frac{1}{2}} = 0,
$$

$$
\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \arcsin x = \arcsin 0 = 0,
$$

function f is continuous at 0.

Since

$$
f(1) = \arcsin 1 = \frac{\pi}{2},
$$

$$
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \arcsin x = \frac{\pi}{2},
$$

$$
\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \ln(x - 1) = \begin{bmatrix} u = x - 1 \\ x \to 1^{+} \Rightarrow u \to 0^{+} \end{bmatrix} = \lim_{u \to 0^{+}} \ln(u) = -\infty,
$$

 f has infinite jump at 1 (the discontinuity of II type).

The graph of this function is presented in Fig. 6.

Example 4. Determine types of discontinuities of function

$$
f(x) = \begin{cases} \frac{\sin x}{x} & \text{if } x \in [-8, 0) \\ \sqrt{3} & \text{if } x = 0 \\ -2 & \text{if } x = \sqrt{2}. \end{cases}
$$

We see that $D_f = [-8, 0] \cup \{\sqrt{2}\}\.$ Function f is continuous on interval $[-8, 0)$ and it is continuous we see that $D_f = [-0, 0] \cup [\sqrt{2}f]$.
at $\sqrt{2}$ (it is the isolated point of D_f).

Remember!

Each function is continuous at isolated points of its domain $-$ it follows directly from the definition of continuity.

Function f may be discontinuous at 0, we have to check it. We obtain

$$
f(0) = \sqrt{3},
$$

$$
\lim_{x \to 0} f(x) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin x}{x} = 1,
$$

so f has removable discontinuity at 0 (we can redefine the function by the change of its value at 0 to obtain new function which is continuous at 0).

The graph of this function is presented in Fig. 7.

Fig. 7. The graph of function from Example 4

Example 5. Determine types of discontinuities of function

$$
f(x) = \begin{cases} (5 - x^2)^{\frac{x}{2 - x}} & \text{if } x \in [0, 2) \\ \frac{\sqrt{x^2 + 1} - 1}{e^{x^3} - 1} & \text{if } x \in (-\infty, 0) \cup [2, +\infty). \end{cases}
$$

We see that $D_f = \mathbb{R}$ and f is continuous on intervals $(-\infty, 0)$, $(0, 2)$, $(2, +\infty)$. The function may be discontinuous at points 0 or 2.

We have

$$
f(0) = 5^{0} = 1,
$$

\n
$$
\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (5 - x^{2})^{\frac{x}{2-x}} = 5^{0} = 1,
$$

\n
$$
\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sqrt{x^{2} + 1} - 1}{e^{x^{3}} - 1} = \lim_{x \to 0^{-}} \frac{\sqrt{x^{2} + 1} - 1}{e^{x^{3}} - 1} \cdot \frac{\sqrt{x^{2} + 1} + 1}{\sqrt{x^{2} + 1} + 1} = \lim_{x \to 0^{-}} \frac{x^{2}}{(e^{x^{3}} - 1)(\sqrt{x^{2} + 1} + 1)} =
$$

\n
$$
= \lim_{x \to 0^{-}} \frac{x^{3}}{e^{x^{3}} - 1} \cdot \frac{1}{x} \cdot \frac{1}{\sqrt{x^{2} + 1} + 1} = -\infty.
$$

The last result was obtained because $\lim_{x\to 0^{-}}$ x^3 $\frac{x^3}{e^{x^3}-1} = \frac{1}{\ln}$ $\frac{1}{\ln e} = 1$ (we apply the formula $\lim_{t \to 0} \frac{a^t - 1}{t}$ $\frac{1}{t} = \ln a$ for $a > 0$), $\lim_{x \to 0^{-}}$ 1 $\frac{1}{x} = -\infty$, $\lim_{x \to 0^-}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{x^2+1+1} = \frac{1}{2}$ $\frac{1}{2}$.

Thus, f is discontinuous at 0 and there is II type discontinuity (infinite jump).

To verify the continuity of f at 2 we calculate:

$$
f(2) = \frac{\sqrt{5} - 1}{e^8 - 1},
$$

$$
\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{\sqrt{x^2 + 1} - 1}{e^{x^3} - 1} = \frac{\sqrt{5} - 1}{e^8 - 1},
$$

$$
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (5 - x^2)^{\frac{x}{2 - x}} = \lim_{x \to 2^-} (1 + (4 - x^2))^{\frac{x}{2 - x}} = \lim_{x \to 2^-} \left[(1 + (4 - x^2))^{\frac{1}{4 - x^2}} \right]^{\frac{x(4 - x^2)}{2 - x}} =
$$

$$
= \lim_{x \to 2^-} \left[(1 + (4 - x^2))^{\frac{1}{4 - x^2}} \right]^{x(x+2)} = e^8.
$$

Both one-sided limits of f at 2 are finite and different so f is discontinuous at 2 and there is I type discontinuity (finite jump).

Example 6. Determine types of discontinuities of function

$$
f(x) = \begin{cases} \arccos \frac{1}{x} & \text{if } x \neq 0\\ 2 \arccot x & \text{if } x = 0. \end{cases}
$$

First, we have to find the domain of f . Of course, we can calculate value of f at 0:

$$
f(0) = 2 \operatorname{arccot} 0 = 2 \cdot \frac{\pi}{2} = \pi.
$$

Function arccos is defined for arguments from $[-1, 1]$ so we have (assuming $x \neq 0$):

$$
-1 \le \frac{1}{x} \le 1
$$

$$
-1 \le \frac{1}{x} \quad \land \quad \frac{1}{x} \le 1
$$

$$
0 \leq \frac{1}{x} + 1 \quad \land \quad \frac{1}{x} - 1 \leq 0
$$

$$
0 \leq \frac{1+x}{x} \quad \land \quad \frac{1-x}{x} \leq 0
$$

$$
x \in (-\infty, -1] \cup (0, +\infty) \quad \land \quad x \in (-\infty, 0) \cup [1, +\infty)
$$

$$
x \in (-\infty, -1] \cup [1, +\infty).
$$

By the way, it is worth to say that the double inequality $-1 \leq \frac{1}{x} \leq 1$ may be easily solved using graphs. We draw hyperbola $y = \frac{1}{x}$ and lines $y = -1$, $y = 1$. Then we look for points of hyperbola which are between these lines and read abscissae of these points.

Finally, the domain is $D_f = (-\infty, -1] \cup \{0\} \cup [1, +\infty)$. The function is continuous on intervals $(-\infty, -1]$, $[1, +\infty)$ as the composition of two continuous functions. It is also continuous at 0, which is the isolated point of D_f . Therefore, f is continuous and its domain is the closed set so function f does not posses discontinuities.

The graph of this function is presented in Fig. 8.

Fig. 8. The graph of function from Example 6

Example 7. Determine types of discontinuities of function

$$
f(x) = \begin{cases} \arccos \frac{1}{x} & \text{if } x \notin \{-1, 1\} \\ 2 + \arccos x & \text{if } x = 1. \end{cases}
$$

We start with the domain of function f . After calculations similar to these in the previous example, we get $D_f = (-\infty, -1) \cup [1, +\infty)$.

Note that -1 is the cluster point of D_f which does not belong to D_f so f has the discontinuity at -1 . We have

$$
\lim_{x \to -1} f(x) = \lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \arccos \frac{1}{x} = \arccos(-1) = \pi.
$$

Thus, f has the removable discontinuity (I type) at -1 .

The function may have (but need not) a discontinuity at 1. We have

$$
f(1) = 2 + \arccos 1 = 2 + 0 = 2,
$$

$$
\lim_{x \to 1} f(x) = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \arccos \frac{1}{x} = \arccos 1 = 0.
$$

Hence, f has the removable discontinuity (I type) at 1. The graph of this function is presented in Fig. 9.

Fig. 9. The graph of function from Example 7

3. An exercise to be solved by oneself

Find discontinuities of functions listed below:

a)
$$
f(x) = \frac{\sin 2x}{\sin 4x}
$$
,
\n**b)** $f(x) = \begin{cases} \arctan \frac{x}{x-2} & \text{if } x < 2 \\ \frac{\sqrt{x^2+9}-5}{x-4} & \text{if } x \ge 2, \\ \ln 3 & \text{if } x = 5, \end{cases}$
\n**c)** $f(x) = \begin{cases} \ln(9-x^2) & \text{if } x \ne 5 \\ \ln 3 & \text{if } x = 5, \end{cases}$
\n**d)** $f(x) = \begin{cases} \frac{e^x - 1}{x^2 - 2x} & \text{if } x < 1 \\ \ln x - e^x + 1 & \text{if } x \ge 1, \\ 2 \arccot (x+2) & \text{if } x > 2, \\ 2 \arccot (x+2) & \text{if } x > 2, \end{cases}$

Answers:

- a) function f has removable discontinuities at points $k\pi$ and $k\pi + \frac{\pi}{2}$ $(l \in \mathbb{Z});$ function f has infinite jumps at points $k\pi + \frac{\pi}{4}$ and $k\pi + \frac{3\pi}{2}$ $(l \in \mathbb{Z});$
- b) function f has finite jump at 2 and removable discontinuity at 4;
- c) function f has infinite jumps at 3 and -3 ;
- d) function f has removable discontinuity at 0;
- e) function f does not have any discontinuities;
- f) function f does not have any discontinuities (note that its domain is $D = \{-2, 2\}$).

References

- 1. E. Łobos, B. Sikora, Calculus and differential equations in exercises, Gliwice 2012, p. 27.
- 2. B. Sikora, E. Łobos, A first course in calculus, Gliwice 2007, pp. 141-143.